Advanced Mesoporous Spinel Li4Ti5O12/rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries.

نویسندگان

  • Hao Ge
  • Tingting Hao
  • Hannah Osgood
  • Bing Zhang
  • Li Chen
  • Luxia Cui
  • Xi-Ming Song
  • Ogechi Ogoke
  • Gang Wu
چکیده

Spinel Li4Ti5O12 (LTO) and reduced graphene oxide (rGO) are attractive anode materials for lithium-ion batteries (LIBs) because of their unique electrochemical properties. Herein, we report a facile one-step hydrothermal method in preparation of a nanocomposite anode consisting of well-dispersed mesoporous LTO particles onto rGO. An important reaction step involves glucose as a novel linker agent and reducing agent during the synthesis. It was found to prevent the aggregation of LTO particles, and to yield mesoporous structures in nanocomposites. Moreover, GO is reduced to rGO by the hydroxyl groups on glucose during the hydrothermal process. When compared to previously reported LTO/graphene electrodes, the newly prepared LTO/rGO nanocomposite has mesoporous characteristics and provides additional surface lithium storage capability, superior to traditional LTO-based materials for LIBs. These unique properties lead to markedly improved electrochemical performance. In particular, the nanocomposite anode delivers an ultrahigh reversible capacity of 193 mA h g(-1) at 0.5 C and superior rate performance capable of retaining a capacity of 168 mA h g(-1) at 30 C between 1.0 and 2.5 V. Therefore, the newly prepared mesoporous LTO/rGO nanocomposite with increased surface lithium storage capability will provide a new opportunity to develop high-power anode materials for LIBs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Dimensional Wavelike Spinel Lithium Titanate for Fast Lithium Storage

Safe fast-charging lithium-ion batteries (LIBs) have huge potential market size on demand according to their shortened charging time for high-power devices. Zero-strain spinel Li4Ti5O12 is one of ideal candidates for safe high-power batteries owing to its good cycling performance, low cost and safety. However, the inherent insulating characteristic of LTO seriously limits its high-rate capabili...

متن کامل

Self-standing porous LiMn2O4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries

Three-dimensional self-supported cathode nanoarchitectures are the key to develop high-performance thin film lithium-ion microbatteries and flexible lithium-ion batteries. In this work, we have developed a facile “hydrothermal lithiation” strategy to prepare vertically aligned porous LiMn2O4 nanowall arrays, comprising highly crystallized spinel nanoparticles, on various conductive substrates w...

متن کامل

Mesoporous Li3VO4/C Submicron‐Ellipsoids Supported on Reduced Graphene Oxide as Practical Anode for High‐Power Lithium‐Ion Batteries

Despite the enormous efforts devoted to high-performance lithium-ion batteries (LIBs), the present state-of-the-art LIBs cannot meet the ever-increasing demands. With high theoretical capacity, fast ionic conductivity, and suitable charge/discharge plateaus, Li3VO4 shows great potential as the anode material for LIBs. However, it suffers from poor electronic conductivity. In this work, we prese...

متن کامل

Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity.

Selenium-impregnated carbon composites were synthesized by infusing Se into mesoporous carbon at a temperature of 600 °C under vacuum. Ring-structured Se8 was produced and confined in the mesoporous carbon, which acts as an electronic conductive matrix. During the electrochemical process in low-cost LiPF6/EC/DEC electrolyte, low-order polyselenide intermediates formed and were stabilized by mes...

متن کامل

Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: rational design of MnCO3/large-area graphene composites.

MnCO3 particles uniformly distributed on large-area graphene form 2D composites whose large-area character enables them to self-assemble face-to-face into orderly packed electrodes. Such regular structures form continuous and efficient transport networks, leading to outstanding lithium storage with high capacity, ultralong cycle life, and excellent rate capability--all characteristics that are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 8 14  شماره 

صفحات  -

تاریخ انتشار 2016